177 research outputs found

    Исследование обогатимости вмещающих пород базальтового месторождения методом отсадки

    Get PDF
    У роботі представлено результати лабораторних досліджень збагачуваності складників порід базальтового родовища у вигляді базальту, туфу та лавобрекчії методом відсадки. Одержано середні цифри з виходу важких фракцій.In work the results of laboratory researches concentration of making breeds of a basalt deposit as basalt, tuff and lavabreccia by a method thickening are accounted. The average figures on an output of heavy fractions are received

    Scalp spindles are associated with widespread intracranial activity with unexpectedly low synchrony

    Get PDF
    In humans, the knowledge of intracranial correlates of spindles is mainly gathered from noninvasive neurophysiologic and functional imaging studies which provide an indirect estimate of neuronal intracranial activity. This potential limitation can be overcome by intracranial electroencephalography used in presurgical epilepsy evaluation. We investigated the intracranial correlates of scalp spindles using combined scalp and intracerebral depth electrodes covering the frontal, parietal and temporal neocortex, and the scalp and intracranial correlates of hippocampal and insula spindles in 35 pre-surgical epilepsy patients. Spindles in the scalp were accompanied by widespread cortical increases in sigma band energy (10-16. Hz): the highest percentages were observed in the frontoparietal lateral and mesial cortex, whereas in temporal lateral and mesial structures only a low or no simultaneous increase was present. This intracranial involvement during scalp spindles showed no consistent pattern, and exhibited unexpectedly low synchrony across brain regions. Hippocampal spindles were shorter and spatially restricted with a low synchrony even within the temporal lobe. Similar results were found for the insula. We suggest that the generation of spindles is under a high local cortical influence contributing to the concept of sleep as a local phenomenon and challenging the notion of spindles as widespread synchronous oscillations.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    Scalp spindles are associated with widespread intracranial activity with unexpectedly low synchrony

    Get PDF
    In humans, the knowledge of intracranial correlates of spindles is mainly gathered from noninvasive neurophysiologic and functional imaging studies which provide an indirect estimate of neuronal intracranial activity. This potential limitation can be overcome by intracranial electroencephalography used in presurgical epilepsy evaluation. We investigated the intracranial correlates of scalp spindles using combined scalp and intracerebral depth electrodes covering the frontal, parietal and temporal neocortex, and the scalp and intracranial correlates of hippocampal and insula spindles in 35 pre-surgical epilepsy patients. Spindles in the scalp were accompanied by widespread cortical increases in sigma band energy (10-16. Hz): the highest percentages were observed in the frontoparietal lateral and mesial cortex, whereas in temporal lateral and mesial structures only a low or no simultaneous increase was present. This intracranial involvement during scalp spindles showed no consistent pattern, and exhibited unexpectedly low synchrony across brain regions. Hippocampal spindles were shorter and spatially restricted with a low synchrony even within the temporal lobe. Similar results were found for the insula. We suggest that the generation of spindles is under a high local cortical influence contributing to the concept of sleep as a local phenomenon and challenging the notion of spindles as widespread synchronous oscillations.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    Detection and Magnetic Source Imaging of Fast Oscillations (40–160 Hz) Recorded with Magnetoencephalography in Focal Epilepsy Patients

    Get PDF
    We present a framework to detect fast oscillations (FOs) in magnetoencephalography (MEG) and to perform magnetic source imaging (MSI) to determine the location and extent of their generators in the cortex. FOs can be of physiologic origin associated to sensory processing and memory consolidation. In epilepsy, FOs are of pathologic origin and biomarkers of the epileptogenic zone. Seventeen patients with focal epilepsy previously confirmed with identified FOs in scalp electroencephalography (EEG) were evaluated. To handle data deriving from large number of sensors (275 axial gradiometers) we used an automatic detector with high sensitivity. False positives were discarded by two human experts. MSI of the FOs was performed with the wavelet based maximum entropy on the mean method. We found FOs in 11/17 patients, in only one patient the channel with highest FO rate was not concordant with the epileptogenic region and might correspond to physiologic oscillations. MEG FOs rates were very low: 0.02–4.55 per minute. Compared to scalp EEG, detection sensitivity was lower, but the specificity higher in MEG. MSI of FOs showed concordance or partial concordance with proven generators of seizures and epileptiform activity in 10/11 patients. We have validated the proposed framework for the non-invasive study of FOs with MEG. The excellent overall concordance with other clinical gold standard evaluation tools indicates that MEG FOs can provide relevant information to guide implantation for intracranial EEG pre-surgical evaluation and for surgical treatment, and demonstrates the important added value of choosing appropriate FOs detection and source localization methods.Facultad de IngenieríaInstituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves

    Get PDF
    Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated ('down', hyperpolarized) and an activated state ('up', depolarized). The 'up' state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the 'up' state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ~ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the 'up' and 'down' states. Spike and high frequency oscillation density was highest during the transition from the 'up' to the 'down' state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the 'down' to the 'up' state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not continuous, during this state of sleep. Both epileptic spikes and high frequency oscillations do not predominate, like physiological activity, during the 'up' state but during the transition from the 'up' to the 'down' state of the slow wave, a period of high synchronization. Epileptic discharges appear therefore more associated with synchronization than with excitability. Furthermore, high frequency oscillations in channels devoid of epileptic activity peak differently during the slow wave cycle from those in channels with epileptic activity. This property may allow differentiating physiological from pathological high frequency oscillations, a problem that is unresolved until now.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves

    Get PDF
    Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated ('down', hyperpolarized) and an activated state ('up', depolarized). The 'up' state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the 'up' state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ~ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the 'up' and 'down' states. Spike and high frequency oscillation density was highest during the transition from the 'up' to the 'down' state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the 'down' to the 'up' state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not continuous, during this state of sleep. Both epileptic spikes and high frequency oscillations do not predominate, like physiological activity, during the 'up' state but during the transition from the 'up' to the 'down' state of the slow wave, a period of high synchronization. Epileptic discharges appear therefore more associated with synchronization than with excitability. Furthermore, high frequency oscillations in channels devoid of epileptic activity peak differently during the slow wave cycle from those in channels with epileptic activity. This property may allow differentiating physiological from pathological high frequency oscillations, a problem that is unresolved until now.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    Scalp spindles are associated with widespread intracranial activity with unexpectedly low synchrony

    Get PDF
    In humans, the knowledge of intracranial correlates of spindles is mainly gathered from noninvasive neurophysiologic and functional imaging studies which provide an indirect estimate of neuronal intracranial activity. This potential limitation can be overcome by intracranial electroencephalography used in presurgical epilepsy evaluation. We investigated the intracranial correlates of scalp spindles using combined scalp and intracerebral depth electrodes covering the frontal, parietal and temporal neocortex, and the scalp and intracranial correlates of hippocampal and insula spindles in 35 pre-surgical epilepsy patients. Spindles in the scalp were accompanied by widespread cortical increases in sigma band energy (10-16. Hz): the highest percentages were observed in the frontoparietal lateral and mesial cortex, whereas in temporal lateral and mesial structures only a low or no simultaneous increase was present. This intracranial involvement during scalp spindles showed no consistent pattern, and exhibited unexpectedly low synchrony across brain regions. Hippocampal spindles were shorter and spatially restricted with a low synchrony even within the temporal lobe. Similar results were found for the insula. We suggest that the generation of spindles is under a high local cortical influence contributing to the concept of sleep as a local phenomenon and challenging the notion of spindles as widespread synchronous oscillations.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    EEG desynchronization during phasic REM sleep suppresses interictal epileptic activity in humans

    Get PDF
    Objective: Rapid eye movement (REM) sleep has a suppressing effect on epileptic activity. This effect might be directly related to neuronal desynchronization mediated by cholinergic neurotransmission.We investigated whether interictal epileptiform discharges (IEDs) and high frequency oscillations—a biomarker of the epileptogenic zone —are evenly distributed across phasic and tonic REM sleep.We hypothesized that IEDs aremore suppressed during phasic REM sleep because of additional cholinergic drive. Methods: Twelve patients underwent polysomnography during long-term combined scalp-intracerebral electroencephalography (EEG) recording. After sleep staging in the scalp EEG, we identified segments of REM sleep with rapid eye movements (phasic REM) and segments of REM sleep without rapid eye movements (tonic REM). In the intracerebral EEG, we computed the power in frequencies 80 Hz) and fast ripples (>250 Hz). We grouped the intracerebral channels into channels in the seizure-onset zone (SOZ), the exclusively irritative zone (EIZ), and the normal zone (NoZ). Results: Power in frequencies <30 Hz was lower during phasic than tonic REM sleep (p < 0.001), most likely reflecting increased desynchronization. IEDs, ripples and fast ripples, were less frequent during phasic than tonic REM sleep (phasic REM sleep: 39% of spikes, 35% of ripples, 18% of fast ripples, tonic REM sleep: 61% of spikes, 65% of ripples, 82% of fast ripples; p < 0.001). In contrast to ripples in the epileptogenic zone, physiologic ripples were more abundant during phasic REM sleep (phasic REM sleep: 73% in NoZ, 30% in EIZ, 28% in SOZ, tonic REM sleep: 27% in NoZ, 70% in EIZ, 72% in SOZ; p < 0.001). Significance: Phasic REM sleep has an enhanced suppressive effect on IEDs, corroborating the role of EEG desynchronization in the suppression of interictal epileptic activity. In contrast, physiologic ripples were increased during phasic REM sleep, possibly reflecting REM-related memory consolidation and dreaming.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señale
    corecore